66 research outputs found

    Hard X-ray standing-wave photoemission insights into the structure of an epitaxial Fe/MgO multilayer magnetic tunnel junction

    Get PDF
    The Fe/MgO magnetic tunnel junction is a classic spintronic system, with current importance technologically and interest for future innovation. The key magnetic properties are linked directly to the structure of hard-to-access buried interfaces, and the Fe and MgO components near the surface are unstable when exposed to air, making a deeper probing, nondestructive, in-situ measurement ideal for this system. We have thus applied hard X-ray photoemission spectroscopy (HXPS) and standing-wave (SW) HXPS in the few kilo-electron-volt energy range to probe the structure of an epitaxially grown MgO/Fe superlattice. The superlattice consists of 9 repeats of MgO grown on Fe by magnetron sputtering on an MgO(001) substrate, with a protective Al2O3 capping layer. We determine through SW-HXPS that 8 of the 9 repeats are similar and ordered, with a period of 33 ± 4 Å, with the minor presence of FeO at the interfaces and a significantly distorted top bilayer with ca. 3 times the oxidation of the lower layers at the top MgO/Fe interface. There is evidence of asymmetrical oxidation on the top and bottom of the Fe layers. We find agreement with dark-field scanning transmission electron microscope (STEM) and X-ray reflectivity measurements. Through the STEM measurements, we confirm an overall epitaxial stack with dislocations and warping at the interfaces of ca. 5 Å. We also note a distinct difference in the top bilayer, especially MgO, with possible Fe inclusions. We thus demonstrate that SW-HXPS can be used to probe deep buried interfaces of novel magnetic devices with few-angstrom precision

    Depth-resolved resonant inelastic x-ray scattering at a superconductor/half-metallic-ferromagnet interface through standing wave excitation

    Get PDF
    We demonstrate that combining standing wave (SW) excitation with resonant inelastic x-ray scattering (RIXS) can lead to depth resolution and interface sensitivity for studying orbital and magnetic excitations in correlated oxide heterostructures. SW-RIXS has been applied to multilayer heterostructures consisting of a superconductor La1.85Sr0.15CuO4 (LSCO) and a half-metallic ferromagnet La0.67Sr0.33MnO3 (LSMO). Easily observable SW effects on the RIXS excitations were found in these LSCO/LSMO multilayers. In addition, we observe different depth distribution of the RIXS excitations. The magnetic excitations are found to arise from the LSCO/LSMO interfaces, and there is also a suggestion that one of the dd excitations comes from the interfaces. SW-RIXS measurements of correlated-oxide and other multilayer heterostructures should provide unique layer-resolved insights concerning their orbital and magnetic excitations, as well as a challenge for RIXS theory to specifically deal with interface effects

    Size Evolution of Ordered SiGe Islands Grown by Surface Thermal Diffusion on Pit-Patterned Si(100) Surface

    Get PDF
    The ordered growth of self-assembled SiGe islands by surface thermal diffusion in ultra high vacuum from a lithographically etched Ge stripe on pit-patterned Si(100) surface has been experimentally investigated. The total surface coverage of Ge strongly depends on the distance from the source stripe, as quantitatively verified by Scanning Auger Microscopy. The size distribution of the islands as a function of the Ge coverage has been studied by coupling atomic force microscopy scans with Auger spectro-microscopy data. Our observations are consistent with a physical scenario where island positioning is essentially driven by energetic factors, which predominate with respect to the local kinetics of diffusion, and the growth evolution mainly depends on the local density of Ge atoms

    Electron Spectra of Oxide Films on Pure Iron and an Iron-Aluminium Alloy

    No full text

    Surface Analysis of Ion Bombarded Metal Foils by XPS

    No full text

    Resonant photoemission at the 2p edge in compounds containing Mn with different valences

    No full text
    We have investigated the Raman-Auger crossover of the Mn 2p non-radiative decays in bulk MnO. For the highest kinetic energy transition in the Mn 2p3p3p decay, Raman behaviour is observed up to approximate to 3.4 eV above the resonance energy (maximum of the L-3 absorption). In the case of the 2p3p3d and 2p3d3d transitions a similar situation occurs up to approximate to 5 eV above the resonance energy. We compare these results to those obtained on a thin MnO layer deposited on Cu, on bulk Mn and on La0.7Sr0.3MnO3. The results are discussed in terms of the screening dynamics of the Mn 2p core hole and of the metallic/insulating character of the material. (c) 2005 Elsevier B.V. All rights reserved
    corecore